The aim of regenerative medicine is not only to recover the integrity of individual organs, but also to maintain the proportions with the rest of the body. The Roselló-Díez group uses animal models to study the local and systemic mechanisms that orchestrate organ growth and repair in vertebrates. The ultimate goal is to lay the groundwork for regenerative therapies aimed at boosting these mechanisms.

Research

The Roselló-Díez group studies the signals that operate within the bones and between them and other tissues/organs during development and regeneration. At the local level, they study phenomena such as compensatory proliferation in response to biochemical and mechanical changes in the cell vicinity. At the systemic level, they are exploring the role of the vascular and nervous systems in the bidirectional communication between the bones and the rest of the body.

  • Characterising the local cell-autonomous and nonautonomous responses to an injury, including the production and role of alarm signal(s) and the response of stem/progenitor cells
  • Dissecting the inter-organ communication mechanisms that lead to systemic growth effects upon local injury, with a focus on the role of the vascular and nervous systems
  • Exploring the impact of the discovered injury response pathways on the buffering of developmental noise (random perturbations during normal development)
  • Exploiting the discovered injury response pathways for the treatment of animal models of dwarfism and fracture repair

Featured Publications

More Publications

Authors
Title
Published In

Roselló-Díez A, Stephen D, Joyner AL.

 

Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth.

Elife. 2017 Jul 25;6. pii: e27210. doi: 10.7554/eLife.27210.

Zheng HF*, Forgetta V*, Hsu YH*, Estrada K*, Roselló-Díez A*, Leo PJ*, Dahia CL*, Park-Min KH*, Tobias JH*, Kooperberg C* et al. (*equal contribution)

 

Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture.

Nature. 2015 Oct 1;526(7571):112-7. doi: 10.1038/nature14878. Epub 2015 Sep 14.

González-Lázaro M, Roselló-Díez A, Delgado I, Carramolino L, Sanguino MA, Giovinazzo G, Torres M.

 

Two new targeted alleles for the comprehensive analysis of Meis1 functions in the mouse.

Genesis. 2014 Dec;52(12):967-75. doi: 10.1002/dvg.22833. Epub 2014 Nov 11.

Roselló-Díez A, Arques CG, Delgado I, Giovinazzo G, Torres M.

 

Diffusible signals and epigenetic timing cooperate in late proximo-distal limb patterning.

Development. 2014 Apr;141(7):1534-43. doi: 10.1242/dev.106831. Epub 2014 Mar 5.

Roselló-Díez A, Ros MA, Torres M.

Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision.

Science. 2011 May 27;332(6033):1086-8. doi: 10.1126/science.1199489.

Roselló-Díez A, Torres M.

Regulative patterning in limb bud transplants is induced by distalizing activity of apical ectodermal ridge signals on host limb cells.

Dev Dyn. 2011 May;240(5):1203-11. doi: 10.1002/dvdy.22635.