The Janovjak Group’s research lies at the interface of synthetic biology and mammalian physiology. The group has established new methods to control cellular signalling pathways, e.g. those activated by receptor tyrosine kinases and GPCRs, and behaviour, e.g. proliferation and survival, of nerve cells, cancer cells and key cell populations involved in metabolism. Their methods offer spatial precision, e.g. to activate only selected cells or tissues ex vivo and in vivo, and temporal precision, e.g. to intervene with specific stages during development and disease progression, and included but are not limited to optogenetics.

The group is currently applying these methods to understand and manipulate cells and tissues affected by degeneration, with a particular focus on Type I diabetes and Parkinson's disease. Their interdisciplinary research combines the development of new molecular tools and the study of disease using mouse and the fruit fly.

For more information about our research, please also visit the Janovjak Group website (

Funding acknowledgment:

  • European Union Seventh Framework Programme
  • Human Frontier Science Program (HFSP)
  • Austrian Science Fund (FWF)
  • Juvenile Diabetes Research Foundation (JDRF)
  • Developing new methods for controlling cell behaviour with high spatio-temporal precision (e.g. optogenetics)
  • Engineering of new genes and proteins for synthetic biology
  • Deciphering the function and physiology of orphan receptors
  • Controlling cell proliferation and survival in models of degenerative disorders

Featured Publications

More Publications

Published In

Mitchell JA, Whitfield JH, Zhang WH, Henneberger C, Janovjak H, O'Mara ML, Jackson CJ.

Rangefinder: A semisynthetic FRET sensor design algorithm.

ACS Sensors 2016;1:1286-1290. doi: 10.1021/acssensors.6b00576

Sako K, Pradhan SJ, Barone V, Inglés-Prieto Á, Müller P, Ruprecht V, Čapek D, Galande S, Janovjak H, Heisenberg CP.

Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation.

Cell Rep. 2016 Jul 19;16(3):866-77. doi: 10.1016/j.celrep.2016.06.036. Epub 2016 Jul 7.

Reichhart E, Ingles-Prieto A, Tichy AM, McKenzie C, Janovjak H.

A phytochrome sensory domain permits receptor activation by red light.

Angew Chem Int Ed Engl. 2016 May 17;55(21):6339-42. doi: 10.1002/anie.201601736. Epub 2016 Apr 21.

Inglés-Prieto Á, Reichhart E, Muellner MK, Nowak M, Nijman SM, Grusch M, Janovjak H.

Light-assisted small-molecule screening against protein kinases.

Nat Chem Biol. 2015 Dec;11(12):952-4. doi: 10.1038/nchembio.1933. Epub 2015 Oct 12.

Whitfield JH, Zhang WH, Herde MK, Clifton BE, Radziejewski J, Janovjak H, Henneberger C, Jackson CJ.

Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction.

Protein Sci. 2015 Sep;24(9):1412-22. doi: 10.1002/pro.2721. Epub 2015 Aug 18.

Hühner J, Ingles-Prieto Á, Neusüß C, Lämmerhofer M, Janovjak H.

Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection.

Electrophoresis. 2015 Feb;36(4):518-25. doi: 10.1002/elps.201400451. Epub 2015 Jan 22.

Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, Inglés-Prieto Á, Janovjak H.

Spatio-temporally precise activation of engineered receptor tyrosine kinases by light.

EMBO J. 2014 Aug 1;33(15):1713-26. doi: 10.15252/embj.201387695. Epub 2014 Jul 1.

Janovjak H, Sandoz G, Isacoff EY.

A modern ionotropic glutamate receptor with a K(+) selectivity signature sequence.

Nat Commun. 2011;2:232. doi: 10.1038/ncomms1231.

Janovjak H, Szobota S, Wyart C, Trauner D, Isacoff EY.

A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing.

Nat Neurosci. 2010 Aug;13(8):1027-32. doi: 10.1038/nn.2589. Epub 2010 Jun 27.