ARMI’s research groups work in a broad range and intersection of scientific research themes and disciplines, including heart and muscle development, immunity, stem cells, neural regeneration, and organ engineering and synthetic biology.

Click on the following links for more information:

Heart and muscle development and regeneration

We use the basic rules of animal regeneration to unlock regenerative potential in patients for treatment of a range of currently untreatable disorders.

  • discovery of the basic rules that govern formation of muscle stem cells in the embryo and adult
  • better understanding of how stem cells are used during muscle regeneration
  • treatments for muscular dystrophy using zebrafish models
  • making the heart a better regenerating organ by stimulating specific signaling pathways.

Currie Group

del Monte-Nieto Group

McGlinn Group

Chow Group

Eynon Group

Immunity and regeneration

We exploit the immune system as a new player in regenerative medicine, which can be manipulated for therapeutic gain.

  • understand the role of the immune system in scar-free healing
  • determine how immune cells form and are continually replenished
  • define the immune system as a critical component of tissue regeneration
  • understand the difference in immune regulation between the regenerative and non-healing context
  • harness the immune system for delivery of therapeutics to regenerating tissues

Lieschke Group

Martino Group

Stem cells and regeneration

We use knowledge gained from highly regenerative tissues and animal models to generate human cells that can treat a range of degenerative disease, and learn how to manipulate cell populations in the body to repair more effectively.

  • define how the genome is read and packaged to form a stem cell
  • understand how a stem cell-like state is maintained and regained in induced reprogramming
  • identify what environment cues (niche) and other cell systems (immune) interact to influence stem cell function
  • enhance endogenous stem cell-mediated repair of injured tissues
  • make therapeutically relevant cell types from stem cells to treat disease
  • unravelling microtubule dynamic at the single cell level using live imaging

Polo Group

Nilsson Group

Nagy Group

Zenker Group

Neural regeneration

We work on stimulating regeneration of the mammalian nervous system after damage and degenerative disease.

  • define how the brain and spinal cord respond after injury and what innate regenerative potential exists in the nervous system of mammals and non-human primates
  • make neural cells from stem cell
  • identify genes needed to make the brain form normally
  • formation of neural stem cell populations in regenerating systems such as the zebrafish brain
  • characterise relative regenerative differences in spinal cord of zebrafish and mammals.

Bourne Group

Kaslin Group

Merson Group

Nillegoda Group

Organ engineering and synthetic biology

ARMI is exploring a number of innovative techniques to enhance function and form that is lost as a consequence of ageing and degenerative diseases.

These techniques explore various aspects of tissue engineering including organoid and organ on a chip technology, bioactive biomaterials and biointerfaces that simulate the cellular microenvironment at the micro and nanoscale, functional biomaterials and synthetic and biological matrices for tissue engineering and transplant development.

  • Characterising the local cell-autonomous and nonautonomous responses to an injury, including the production and role of alarm signal(s) and the response of stem/progenitor cells
  • Exploring the impact of the discovered injury response pathways on the buffering of developmental noise (random perturbations during normal development)

Roselló-Díez Group

Roman Group

Industry-based PhDs

ARMI has developed strong relationships with members of the Australia and and global regenerative medicine industry. ARMI students are able to partake in several programs that introduce them to industry mentors, allow them to immerse themselves in the world of commercialisation and develop the necessary skills to help translate new treatments and technologies from bench to bedside.

Visit the Regenerative Medicine Industry Interface page to learn more about PhD opportunities in collaboration with industry.

Monash-CUHK collaboration

Monash University and The Chinese University of Hong Kong (CUHK) established a PhD exchange programme in 2017. The programme aims to provide our PhD students with opportunities to access research expertise, resources and infrastructure at both institutions.

The programme is administered by the Monash University Faculty of Medicine, Nursing and Health Sciences (FMNHS) and The CUHK Faculty of Medicine. The faculties share both common and complementary research strengths and capabilities and a strong focus on translational research outcomes.

Visit the Monash-CUHK collaboration page to learn about PhD opportunities within this transnational collaboration.